
CSCI2202 Lecture 3:
While, Dictionaries, Modules,

Reproducibility
TAs: Ehsan Baratnezhad (ethan.b@dal.ca); Precious Osadebamwen

(precious.osadebamwen@dal.ca)

Overview

● List functions (range, zip, lazy evaluation)
● While loops
● Dictionaries
● Modules, Packages, and Import
● Namespaces
● Reproducibility/Clean Notebook

Handy loop/list related functions

Generating a list of numbers with “range”

>>> list(range(4))

[0, 1, 2, 3]

>>> list(range(5, 10))

[5, 6, 7, 8, 9]

>>> list(range(2, 9, 2))

[2, 4, 6, 8]

● Same syntax as indexing/slices:
○ start, stop, increment

● range(4) == range(0, 4, 1)

x = enumerate([‘a’, ‘b’, ‘c’])

x

<enumerate at 0x738dcf5156c0>

list(x)

[(0, 'a'), (1, 'b'), (2, 'c')]

for ix, value in enumerate([‘a’, ‘b’, ‘c’]):

print(value)

if ix == 1:

break

‘a’

‘b’

Many list-related functions use “lazy evaluation”

● Enumerate gives us a list of tuples with
the (index, value) pairs

● Imagine x is very very big

● What if we only needed to enumerate
the first couple of items in the list?

● Lazy evaluation means only doing
calculations when (and therefore IF) they
are actually needed

● Zip takes lists/tuples of equal
length and (lazily) returns a list
of tuples of each position
across input

 [(l1_v1, l2_v1, l3_v1),
 (l2_v2, l2_v2, l3_v2)]

● Works for >2 lists/tuples
● Lazily evaluated
● Will stop when any input ends:
list(zip(['a', 'b'], [1]))

[('a', 1)]

Zip efficiently combines equal length lists and/or tuples

>>> x = [10, 50, 100]

>>> y = [‘a’, ‘b’, ‘c’]

>>> zipped = zip(x, y)

>>> zipped

<zip at 0x738dce007ec0>

>>> list(zipped)

[(10, 'a'), (50, 'b'), (100, 'c')]

Range is often used to generate indices for strings

a = ‘abc’

b = ‘123’

for i in range(len(a)):

print(a[i] + b[i])

a1

b2

c3

for x in range(5, 15, 3):
print(x)

5
8
11
14

We can iterate over more than 1 list with zip/enumerate

list1 = [‘a’, ‘b’, ‘c’]

list2 = [‘1’, ‘2’, ‘3’]

for a,b in zip(list1, list2):

print(a + b)

a1

b2

c3

Doing a loop until something is True

Don’t always know how many times we need to loop

curr_temp, room_temp, minutes = 50, 25, 0

for i in range(1000000000):

temp_diff = curr_temp - room_temp

if abs(temp_diff) <= 0.5:

break

curr_temp = curr_temp - (0.1 * temp_diff)

minutes += 1

curr_temp, room_temp, minutes = 50, 25, 0

while abs(curr_temp - room_temp) > 0.5:
 temp_diff = curr_temp - room_temp
 curr_temp = curr_temp - (0.1 * temp_diff)
 minutes += 1

while CONDITION:
repeat BODY

Beware - Infinite Loops

while False:

print(“Never execute”)

while True:

print(“Will never end”)

x = 50

while x < 100:

x - 5

● If condition is False at beginning loop body will
not run

● If condition can never be made False loop body
will repeat until python crashes (“infinite loop”)

○ Make sure variables in conditional are actually
changed during the loop

○ Be careful with direction of inequalities
○ Be careful using “while True:”

Indexes are great, but what if we don’t want
to use (only) integers?

Dictionaries (aka hashmaps, maps, hash…)

Dictionaries store sets of links between keys and values

d = {} # create an empty dictionary

d[“key”] = “value” # map key -> value

d[“any number/string”] = 10

d[42] = “any variable”

d[“even list”] = [1, 2, 3, (4, 5)]

x = 5

y = {x: x+1, x-5: x/2} # variables

d

{‘key’: ‘value’,

 ‘any number/string’: 10,

 42: “any variable”,

 “even_list”: [1, 2, 3, (4, 5)]}

y

{5: 6, 0: 2.5}

Get values in dictionary using keys (or special methods)

d = {‘key1’: ‘value1’,

 ‘key2’: [‘value2a’, ‘value2b’]}

d[‘key1’] # ‘value1’

d[‘key2’][1] # ‘value2b’

d.get(‘key2’) # [‘value2a’,‘value2b’]

d.keys() # dict_keys([‘key1’, ‘key2’])

d.values()

dict_values([‘value1’,

[‘value2a’, ‘value2b’])

● You can access specific values in
dictionary with key in [] or with the .get()
method

● d.keys() will provide list of all keys in a
dictionary

● d.values() will provide list of all values in a
dictionary

● d.items() will provide:
○ zip(d.keys(), d.values())

[(‘key1’, ‘value1’), (‘key2, [‘value2a’, ‘value2b’])]

Testing for keys in dictionary

d = {‘foo’: ‘bar’}

‘foo’ in d # True

‘bar’ in d # False (only checks keys)

‘key1’ in d # False

D[‘key1’]

KeyError: 'key1’

Get can be used to return default value if key missing

d = dict([[1, ‘a’], [10, ‘c’]])

d.get(50, ‘Nope’)

‘Nope’

d.get(1, ‘Nope’)

‘a’

Note: .setdefault lets you do something similar when adding keys

setdefault can be create default value if key missing
d = {1: [‘a’,’b’], 2: [‘c’]}

d[1].append(‘d’)

{1: [‘a’, ‘b’, ‘d’], 10: [‘c’]}

if 5 in d:

d[5].append(‘e’)

else:

d[5] = [‘e’]

{1: [‘a’, ‘b’, ‘d’], 10: [‘c’],

5: [‘e’]}

d = {1: [‘a’,’b’], 10: [‘c’]}

d.setdefault(5, []).append(‘e’)

{1: [‘a’, ‘b’, ‘d’], 10: [‘c’]

 5: [‘e’]}

d.setdefault(10, []).append(‘f’)

{1: [‘a’, ‘b’, ‘d’],

10: [‘c’, ‘f’]

 5: [‘e’]}

Dictionary of lists - very common data structure

Modules

Folder containing multiple python scripts

CSCI_2202/

- script.py
- code.py
- my_module/

- stats.py
- micro.py
- physics/

- code.py
- answers.py

import lets us access functions (and objects) in other files

code.py

x = 10

def fun_func(y):

 z = y + 10

return z

dict_a = {x: x + 1}

script.py (or notebook)

import code

print(code.x)

print(code.fun_func(30))

print(code.dict_a[code.x])

10

40

11

x
fun_func
dict_a

Import to .ipynb is easy but importing FROM a .ipynb is more complicated

code

code script

import lets us access functions (and objects) in other files

code.py

x = 10

def fun_func(y):

 z = y + 10

return z

dict_a = {x: x + 1}

script.py (or notebook)

from code import x

print(x)

print(code.x)

print(code.fun_func(10))

10

Error

Error

x
fun_func
dict_a

code script

x

import lets us access functions (and objects) in other files

code.py

x = 10

def fun_func(y):

 z = y + 10

return z

dict_a = {x: x + 1}

script.py (or notebook)

from code import x

import code

print(x)

print(code.x)

print(code.fun_func(30))

print(code.dict_a[code.x])

10

10

40

11

x
fun_func
dict_a

code

code script

x

import lets us access functions (and objects) in other files

code.py

x = 10

def fun_func(y):

 z = y + 10

return z

dict_a = {x: x + 1}

script.py (or notebook)

from code import *

print(x)

print(fun_func(30))

print(dict_a[x])

print(code.x)

10

40

11

ERROR

x
fun_func
dict_a

x
fun_func
dict_a

code script

import lets us access functions (and objects) in other files

code.py

x = 10

def fun_func(y):

 z = y + 10

return z

dict_a = {x: x + 1}

script.py (or notebook)

x = 50

from code import *

print(x)

10

x
fun_func
dict_a

x replaces x
fun_func
dict_a

code script

dir function can be used to see what is in a module

code.py

x = 10

def fun_func(y):

 z = y + 10

return z

dict_a = {x: x + 1}

script.py (or notebook)

import code

dir(code)

['__builtins__',
'__cached__', '__doc__',
'__file__', '__loader__',
'__name__', '__package__',
'__spec__', 'dict_a',
'fun_func', 'x']

x
fun_func
dict_a

code

code script

PYTHONPATH - where python looks for modules/packages

import sys

print(sys.path)

[current_folder, python_library,
python_libdynload,
python_sitepackages…]

● System variable that controls where python checks for
packages

● Order matters - it will check list in order and stop if it
finds the import

○ Our code.py will be imported instead of “code” in the
standard library because it comes first

● Anaconda is managing this for you (via conda)

● You can edit this in script using sys.path but usually a
BAD IDEA!

What if you have lots of modules?

Packages are made of modules - dotted import

- script.py

- my_package

- __init__.py

- micro.py

- stats.py

__version__

my_package

dna
virus

t-test
mean

micro

stats

script.py (or notebook)

import my_package.micro

print(my_package.micro.dna)

‘agc’

import my_package.micro as m

print(m.is_virus(m.dna))

True

my_package.micro

m

script

Packages - aliases keep code simpler!

- script.py

- my_package

- __init__.py

- micro.py

- stats.py

- physics/

- __init__.py

- astro.py

script.py (or notebook)

import my_package.physics.astro

print(my_package.physics.astro.cosmo_const)

import my_package.physics.astro as astro

print(astro.cosmo_const)

from my_package.physics.astro import *

print(cosmo_const)

How does python keep track of things?
Namespaces

Namespaces map names to objects

x = 5

def func_z():

return 10

Namespaces are basically dictionaries
code = {‘fun_func': fun_func,

 'x’: x,
 ‘Dict_a’: dict_a}

What is useful is we often have multiple
namespaces in our code
code_v2 = {‘fun_func': fun_func,

 'x’: x,
 ‘Dict_a’: dict_a}

Namespaces let us use the same variable name
to mean different things.

code.py

x = 10

def fun_func(y):

 z = y + 10

return z

dict_a = {x: x + 1}

x
fun_func
dict_a

code

x
fun_func
dict_a

code_v2

functions (among others) create new namespaces

i = 50

def func(i):

i = 10

return i

j = func(i)

print(i, j)

50, 10

top_namespace = {‘i’: obj1, #50

 ‘j’: obj2, #10

 ‘func’: func}

func_namespace = {‘i’: obj4} # 10

Namespaces form a hierarchy.

The “Scope” of a bit of code determines which level
of this hierarchy it searches for namespace mapping

Scopes: search hierarchy of namespace: local first

i = 50

def func(i):

i = 10

return i

j = func(i)

print(i, j)

50, 10

global = {‘i’: obj1, #50

 ‘j’: obj2, #10

 ‘func’: func}

local = {‘i’: obj4} # 10

Error if you try to change a variable in different namespace

x = 1

def func():

x = x - 5

 print(x, '[x inside func()]')

func()

UnboundLocalError: local variable x
referenced before assignment

Note: there are ways to force python
to do this but it is usually a bad idea:
global, local, nonlocal

Nesting can add additional enclosed scopes

global = {‘a_var’: ‘global value’,
‘outer’: outer}

enclosed = {‘a_var’: ‘enclosed value’,
‘inner’: inner}

local = {‘a_var’: ‘local value’}

a_var = 'global value'

def outer():

 a_var = 'enclosed value'

 def inner():

 a_var = 'local value'

 print(a_var)

 inner()

outer()

‘local value’

Priority list means built-ins can be overwritten

Built_in = {‘len’: len, …}

global = {‘len’: len, ‘a_func’: a_func}

local_len = {‘l’: l, ‘i’: i, ‘in_var’:
in_var}

local_a_func = {‘len_in_var’: len_in_var,

 ‘In_var’: in_var}

def len(in_var):

 print(‘my len() function')

 l = 0

 for i in in_var:

 l += 1

 print(l)

def a_func(in_var):

 len_in_var = len(in_var)

 print(len_in_var)

a_func('Hello, World!')

“my len() function”

13

How do we do good scientific analyses?

Necessary (but not sufficient) for scientific
analyses to be reproducible

Reproducibility should be the bare minimum

oliviergimenez.github.io/reproducible-science-workshop

Reproducibility should be the bare minimum

oliviergimenez.github.io/reproducible-science-workshop

Reproducibility should be the bare minimum

oliviergimenez.github.io/reproducible-science-workshop

Reproducibility should be the bare minimum

oliviergimenez.github.io/reproducible-science-workshop

Makes your own life easier

oliviergimenez.github.io/reproducible-science-workshop

What do we need to do to have reproducible
research?

Reproducibility checklist
● Don’t do anything by hand (even “one-off” tasks)
● Script every interaction with data:

○ Data collection
○ Moving data on your computer
○ Formatting datasets
○ Cleaning data
○ Exploratory data analysis
○ Main analyses
○ Report generation

● Minimise interactivity/point and click interactions
● Keep track of the exact version of every library/program you use
● Version control all data, code, and documentation
● Use a random seed

Notebooks are a key tool for doing this

Jupyter supports markdown OR code cells

Markdown is a quick way to indicate how
to format plaintext

Converts to HTML in background

Supported by many developer tools

Out of order cell-execution can lead to bugs and errors
[3] y = x(5)

[1] def x(x):

return x * 2

[2] y = x(100)

[4] y

10

Always run this at the end of a notebook -
the notebook on the left will error now!

Making a good notebook

Structure your Notebook
● Give your notebook a title (H1 header) and a meaningful preamble to describe its purpose and contents.
● Use headings and documentation in Markdown cells to structure your analysis and explain your steps.

Refactor & outsource code into modules
● After you’ve written plain code in cells to get ahead quickly, acquire the habit of turning stable code into functions and move them to a

dedicated module. This makes your notebook more readable and is incredibly helpful when productionizing your workflow. Following is
clearer and easier to test than repeating the same code many times in your notebook.

import dataprep

df = dataprep.load_and_preprocess_data(filename)

● Stick to the standards of good coding — Standardise your formatting, use meaningful variable and function names, comment sensibly,
modularize your code and don’t be too lazy to refactor.

Restart kernel and run-all cells (and check for errors!)

Overview

● Several handy list functions (range, zip) use lazy evaluation
● While loops enable easy conditional loops
● Dictionaries store key -> value pairs
● Reusing/organising code can be done using modules & packages
● Namespaces are how python keeps track of variables
● Reproducibility makes for better science
● Creating clean, well-documented, notebooks that run the cells in order is

useful for this.

